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Abstract. We perform fits of ΛQCD and the gluon fragmentation function D(x, Q) at initial scale Q0 � ΛQCD

to charged light hadronmomentum spectra data by evolving in themodified leading logarithmapproximation.
Without additional assumptions, we achieve a good description of the available data for ξ = ln(1/x) up to
and around the Gaussian peak, and values of ΛQCD acceptably close to those in the literature. In particular,
we find that this procedure describes the position of the peak, and, in contrast to the limiting spectrum,
also the normalization.

1 Introduction

Cross sections in which hadrons are detected in the final
state currently cannot be reliably calculated from first prin-
ciples in quantum chromodynamics (QCD). However, as a
result of the factorization theorem, one can separate these
cross sections into perturbatively calculable hard parts con-
voluted with parton densities if there are hadrons in the
initial state and fragmentation functions (FFs), which con-
tain all the information on the soft transition from a par-
ton a to the produced hadron h. FFs for charged particles
have been well determined over large and intermediate
values of the hadronic momentum fraction x = 2p/

√
s,

where p is the momentum of the hadron h and
√

s is the
center-of-mass energy, by fitting to a wealth of experimen-
tal data [1]. However, data at x < 0.1 have always been
excluded from fits because the convergence of the fixed
order perturbation series for the evolution of the FFs is
spoilt by terms of the form αn

s lnm(1/x), and so FFs are not
well understood at small x. A theory which resums these
logarithms at leading and sub-leading order exists – the
modified leading logarithm approximation (MLLA) [2] (for
reviews see [3,4]). The MLLA is a systematic improvement
over an earlier approximation, the double logarithmic ap-
proximation (DLA), which resums leading logarithms by
summing tree level diagrams in which the outgoing gluons
are strongly ordered in their angles of emission, thereby
giving the largest logarithm of the gluon FF at the order
in αs of the diagram [5].

The MLLA has been primarily studied in the context
of the local parton–hadron duality (LPHD) approach [6].
Here, one assumes that, when the longitudal momentum
fraction z of the observed hadron relative to the parent
parton is low, a sufficiently inclusive hadronic process has

similar properties to the corresponding process involving
partons with transverse momentum less than the order
of the hadron’s mass. The FFs describe all partons with
transverse momentum less than the factorization scale Q,
so for light hadron production the shape in x space of the
initial FFs with initial factorization scale Q0 = O(ΛQCD)
will be similar to the shape of the probability for a parton to
emit a parton, i.e. these FFs are delta functions in (1− z),
and only the absolute normalization Kh is undetermined.
Using this assumption, and fixing Q0 = ΛQCD, where the
MLLA resummed evolution is well behaved, leads to the
so-called limiting spectrum [7, 8] which can make predic-
tions for data at small x with just two free parameters to
be fitted, Kh and ΛQCD. Together with the conventional
choice Q =

√
s/2, this approach has been very success-

ful at describing the ξ = ln(1/x) dependence of small x
data, provided some modifications are made to the MLLA
evolved normalization: in [8] an additional component not
provided by the MLLA was added, whereas in [9] a different
Kh was fitted for each value of

√
s.

In this paper, we are interested in studying MLLA evo-
lution without using strong assumptions about the non-
perturbative physics such as the LPHD, or modifying the
MLLA evolution itself. There are a number of impor-
tant reasons for this. Firstly, it is interesting to determine
whether the MLLA can describe the

√
s dependence of

the overall normalization of the data. Secondly, in current
analyses, where only the NLO calculation has been used,
such as in [1], fitting is achievable only to data for which
x � 0.1 (ξ � 2.3). A continued rise in the data as x de-
creases is predicted, whereas the experimental data reach
a peak and then fall. Therefore it is important to know if
one can use the MLLA to improve the hard part at small
x such that the fitting can be extended over that in the
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literature to include data for which x < 0.1 and therefore,
since the cross section depends on the FFs for z ≥ x, obtain
the FFs in that region. Thirdly, using weaker assumptions
will allow for a purer test of the MLLA and determine its
kinematic range of validity better. This can be achieved, as
in global fits, by taking Q0 � ΛQCD to stay in the pertur-
bative region, in which case one does not need to assume
the limiting spectrum to be valid, and absorbing the soft
physics at energy scales less than Q0 into a parameterized
FF, whose free parameters can be fitted to data at Q by
evolving this initial FF in the MLLA. The distorted Gaus-
sian in ξ, with no MLLA evolution, gives a good description
of data over the range of Q � ΛQCD [7, 10], so we shall
employ this parameterization at Q = Q0.

The organization of this work is as follows. In Sect. 2
we shall repeat the basic MLLA equation in moment space
and discuss various approximations to it. Section 3 contains
the comparison with e+e− single charged hadron spectra
at the larger scale Q > Q0 and the determination of ΛQCD.
In Sect. 4 we make some changes to the theoretical input to
further understand the limitations of our general approach.
Finally, in Sect. 5 we present our conclusions.

2 MLLA evolution

Before we present our results concerning the evolution of
the low x spectra based on the MLLA evolution equations,
we shall list the basic equations on which our analysis rests.
We work in the LO approximation where the inclusive cross
section for e+e− → hX as a function of x is related to the
FFs Dh

q (x, Q) for the transitions q → h and q̄ → h by

1
σtot

dσh

dx
=

∑
q e2

qD
h
q (x, Q)∑

q e2
q

, (1)

where eq is the electoweak charge on quark q, σtot =
Nc

∑
q 4πe2

qα
2/(3s) is the total cross section, and σh is the

cross section for the inclusive production of a hadron h.
As usual we also use the variable ξ. At sufficiently small

x, i.e. large ξ, the contribution to the cross section from the
non-singlet sector may be neglected in our approach since
the non-singlet evolution is free from small x logarithms.
Writing each quark FF in the form

Dh
q (x, Q) = Dh

Σ(x, Q) + Dh
NS,q(x, Q), (2)

where the singlet Dh
Σ(x, Q) is defined to be the sum over all

quark FFs divided by the number of quark flavors Nf and
the Dh

NS,q(x, Q) are the non-singlets, we therefore see that
each quark FF in (1) may be replaced by the singlet FF.
Furthermore, at small x one can make the approximation,
good within MLLA accuracy, that the singlet FF is related
to the gluon FF by

Dh
Σ(x, Q) =

2CF

Nc
Dh

g (x, Q), (3)

where CF = (N2
c − 1)/(2Nc). Using these approximations

in (1), we find that the cross section in the MLLA can

be written
1

σtot

dσh

dx
=

2CF

Nc
Dh

g (x, Q). (4)

In other words, for describing the fragmentation q(q̄) → h
at large ξ we can just use the FF for g → h. Note therefore
that the cross section can only depend on Nf through the
evolution of the gluon FF, which we will consider just now.
In the following we shall skip the upper and lower indices
and write Dh

g (x, Q) = D(x, Q). The MLLA equation for
D(x, Q) is most easily written by introducing the moment
transform Dj(Q) of D(x, Q), which is

Dj(Q) =
∫ 1

0
dxxj−1D(x, Q), (5)

with the inverse transformation

D(x, Q) =
∫ τ+i∞

τ−i∞

dj

2πi
x−jDj(Q), (6)

where τ must be chosen such that the integration contour
lies to the right of all poles in Dj(Q). We introduce ω = j−1
and write Dω(Y ) = Dj(Q) with Y = ln(Q/Q0). Then the
MLLA equation for Dω(Y ) is [3](

ω +
d

dY

)
d

dY
Dω(Y ) − 4Nc

αs

2π
Dω(Y )

= −a

(
ω +

d
dY

)
αs

2π
Dω(Y ), (7)

where a = 11Nc/3 + 2Nf/(3N2
c ). The solution to this

equation for Dω(Y ) is weakly dependent on Nf . Indeed,
as shown in [8], the moments of the data calculated with
Nf = 3 and those calculated with Nf increasing by unity
whenever

√
s is large enough for the contribution from a

heavy quark flavor to become relevant give similar results
up to

√
s = 202 GeV within the error range on the moments

extracted from the experimental data. This observation is
also substantiated by a recent experimental analysis [11],
where itwas found that at theZ0 resonance,where the effect
of heavy quark production is maximal, the ξ spectra at the
peak determined for all flavors differs from the one for just
the light flavors by about 8%. In analyses using the limiting
spectrum it has been sufficient for all available data to set
Nf = 3, and we will therefore use this value throughout this
paper. By introducing the anomalous dimension γω(αs),
we have

Dω(Y ) = Dω(0) exp
{∫ Y

0
dyγω(αs(y))

}
. (8)

If Dω(0) is known from the FF at the starting scale Q0,
which must be taken from experimental data, (8) gives us
the solution for arbitraryY , if we know γω(αs). Equation (7)
is equivalent to the following differential equation for γω:

(ω + γω) γω − 4Nc
αs

2π
(9)

= −β(αs)
d

dαs
γω − a (ω + γω)

αs

2π
+ ab

(αs

2π

)2
,
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where

β(αs) =
d

dY
αs(Y ) = −b

α2
s

2π
, (10)

with b = 11Nc/3−2Nf/3. The first term on the right hand
side of (9) originates from the running of αs. The second
term gives the hard single-logarithmic correction to the
DLA soft emission. The last term is formally a next-to-
MLLA term, which may be neglected. A general solution
of (7) in terms of confluent hypergeometric functions is
known [3, 7]. Equivalently, one can solve (9) in terms of
Whittaker functions. However, since the MLLA equation
is only valid in the region αs � 1 and ω = O(

√
αs), we

can obtain a simpler but equally accurate solution to (9)
by expanding in αs/ω � 1 while keeping αs/ω2 = O(1)
fixed,

γω =
∞∑

n=1

(αs

ω

)n

gn

( αs

ω2

)
, (11)

and solving for each term. The first and second term will
then resum double and single logarithms respectively, but
the higher terms obtained this way will be incomplete since
the MLLA does not treat terms in γω which are of O(α3/2

s )
or higher in the region of validity given above.

The DLA corresponds to the n = 1 term, only, in (11),
in which case the terms in (9) proportional to β(αs) and
a can be neglected. One obtains two solutions:

γ±
ω =

1
2

(
−ω ±

√
ω2 + 4γ2

0

)
, (12)

with
γ2
0 = 4Nc

αs

2π
. (13)

For αs → 0 we obtain

γ+
ω =

γ2
0

ω
=

4Nc

ω

αs

2π
, γ−

ω = −2ω, (14)

i.e. γ+
ω has the familiar singularity ∼ 1/ω which determines

the small x behavior of D(x, Q) in the leading logarithm
approximation (LLA). Therefore the correct solution in the
DLA is γω = γ+

ω . This solution is finite for ω → 0 and is
equal to γ0 ∼ √

αs.
Once the solution for the n = 1 term in (11) has been

chosen, there is only one solution for the n = 2 term, and
we have finally

γω =
1
2

(
−ω +

√
ω2 + 4γ2

0

)

+
αs

2π

[
b

γ2
0

ω2 + 4γ2
0

− a

2

(
1 +

ω√
ω2 + 4γ2

0

)]

+O

((αs

ω

)3 αs

ω2

)
. (15)

This approximate solution is usually referred to as the
MLLA result [3]. The term proportional to a modifies the
αs → 0 limit to

γω =
(

4Nc

ω
− a

)
αs

2π
, (16)

which reproduces the finite correction to the LO γ+
ω in the

LLA. The result in (15) must be substituted in (8) to obtain
the corresponding MLLA solution for Dω(Y ). Writing

Dω(Y ) = Dω(0)D̃ω(Y ), (17)

we have

ln D̃ω(Y ) =
∫ Y

0
dyγω(αs(y)). (18)

Using the LO formula αs(y) = 2π/[b(y + λ)], where we
introduce λ = ln(Q0/ΛQCD), the integration in (18) with
γω given in (15) yields

ln D̃ω(Y ) = f(ω, Y, λ) − f(ω, 0, λ), (19)

where

f(ω, Y, λ) = − 1
2

Z +
1
2

√
Z(Z + 4A)

+(2A − B) ln
(√

Z + 4A +
√

Z
)

+
(

1
4

− B

2

)
lnZ − 1

4
ln(Z + 4A). (20)

In (20) we introduced A = 4Nc/(bω), B = a/b and Z =
ω(Y + λ). Then the solution D̃ω(Y ) can be written as

D̃ω(Y ) = ef(ω,Y,λ)−f(ω,0,λ), (21)

with

ef(ω,Y,λ) = e− 1
2 Z+ 1

2

√
Z(Z+4A)

[√
Z + 4A +

√
Z
]2A−B

×
(

Z

Z + 4A

) 1
4

Z− B
2 . (22)

By fixing ΛQCD the evolution of Dω(Y ) is completely de-
termined by (21) and (22). This solution has for Y → ∞
the following asymptotic behavior:

ef(ω,Y,λ) � ZA−B . (23)

In [3,12] it was found that for ω � 1, γω in the MLLA
accidentally mimics the behavior of the LLA LO γω rea-
sonably well. This is aided by the observation that the
ω → ∞ limit of (15) is equal, up to terms of O(1/ω),
to that of (16), the αs, ω → 0 limit of the LLA LO γω,
whose O(ω) corrections turn out to be rather unimportant
at ω = O(1) and negative at large ω. Therefore we neglect
those corrections beyond MLLA which are important at
small ξ.

Solving (9) for the n = 3 term of (11) gives us a con-
tribution to the next-to-MLLA correction which reads

γNMLLA
ω =

(αs

ω

)3
g3

( αs

ω2

)
=
(αs

2π

)2
[
a2 γ2

0

(ω2 + 4γ2
0)

3
2
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+
ab

2

(
1√

ω2 + 4γ2
0

− ω3

(ω2 + 4γ2
0)2

)
(24)

+b2

(
2γ2

0

(ω2 + 4γ2
0)

3
2

− 5γ4
0

(ω2 + 4γ2
0)

5
2

)]
.

The addition of this term to the expression in (15) would
give a more accurate approximation to the exact solution
to (9) if (11) were a suitably convergent series. However,
these results are not complete at next-to-MLLA order; in
particular they refer only to gluon jets. In the complete
next-to-MLLA cross section both the evolution and (3)
obtain a correction, the latter arising from the energy de-
pendent differences between quark and gluon jets [13]. In
any case, we can at least use the term in (24) to deter-
mine the stability of our form for the MLLA evolution in
different regions of ξ and

√
s.

Finally, since partons are treated as massless in the
MLLA, the parton momentum spectrum is equivalent to
the parton energy spectrum. Consequently the MLLA for-
malism needs modification in order to incorporate hadron
mass effects, which become more relevant as ξ increases.
However, such effects will be neglected in our analysis since
otherwise model assumptions are needed.

3 Fitting the experimental data

In this section we test how well the MLLA described in
the previous section agrees with experimental data, both
by fitting free parameters to data sets and by using the
resulting fitted parameters to predict other data sets.

ΛQCD is the only parameter on which MLLA evolution
depends, and should therefore be obtainable by fitting to
data at widely separated energies, starting from TASSO
data at Q0 = 14 GeV/2 [14]. Therefore we use data at
the highest

√
s, namely the recent data at

√
s = 202 GeV

from OPAL [9], as well as data at 91 GeV [15] from the
same collaboration, which have the highest accuracy. For
all experimental data used in this paper, systematic and
statistical errors are added in quadrature. As in [9], we
impose a lower bound on the OPAL data of

ξ > 0.75 + 0.33 ln
(√

s/GeV
)

(25)

since at lower ξ the experimental errors are too small to fit
using only one parameter. Including these small ξ points in
fact does not change the results significantly but leads to a
much higher minimized χ2. To control the number of data
used in the non-perturbative region of hadronic momentum
p = O(ΛQCD), we introduce a cut-off mass scale m and
impose an upper limit on the data used of p > m, or

ξ < ln
√

s

2m
. (26)

The initial gluon FF used for this fit was obtained by
independently fitting it to data at the lowest

√
s, namely the

TASSO data at
√

s = 14 GeV, using a distorted Gaussian,

xD(x, Q0) =
N

σ
√

2π
(27)

Table 1. Fit of a distorted Gaussian to all 20 TASSO data
points at

√
s = 14 GeV with Q0 =

√
s/2

Parameter N ξ σ2 s k

Value 9.71 2.33 0.61 −0.11 −0.77
Error 0.11 0.01 0.02 0.05 0.12

× exp
[

1
8

k − 1
2

sδ − 1
4

(2 + k)δ2 +
1
6

sδ3 +
1
24

kδ4
]

,

where δ = (ξ − ξ)/σ and Q0 = 14 GeV/2, and the re-
sults are shown in Table 1. The errors were obtained from
the diagonal components of the inverted matrix of second
derivatives of χ2 at the minimum. Since this method as-
sumes that χ2 is quadratic in the parameters, these errors
should not be taken too seriously. In this case there was no
need to impose a lower ξ bound on the TASSO data since
there were 5 free parameters in the fit. We also imposed
no upper ξ bound on this data, since doing so either made
little difference for m � 0.5 GeV or did not constrain the
parameters sufficiently for m � 0.5 GeV. The achieved χ2

per degree of freedom, χ2
DF, is 0.76, and the results in Ta-

ble 1 for the parameters of the distorted Gaussian fit agree
well with earlier fits in the literature [16].

The resulting values of ΛQCD when performing this
procedure, and cutting the data using values of m ranging
from 0.3 to 0.6 GeV, are shown in Table 2, where it can
be seen that the obtained value for ΛQCD with Nf = 3
depends somewhat on the upper limit for ξ. The errors
were calculated by varying ΛQCD, in both directions, from
its value at the minimum until χ2 increased by unity. The
errors were found to be symmetric and close to the inverse
of the second derivative of χ2 with respect to ΛQCD. If we
choose the ΛQCD from the fit with the smallest χ2

DF we
have ΛQCD = 317 MeV in reasonable agreement with LO
ΛQCD values with Nf = 3 obtained in other analyses [8,16].

The fits for m = 0.3 and 0.6 GeV are shown graphically
in Figs. 1 and 2. These figures also show the predictions of
the respective fits for TPC data at 29 GeV [17], TASSO
data at 35 and 44 GeV [14], TOPAZ data at 58 GeV [18]
and OPAL data at 133 [19] and 172 GeV [20]. In all plots
in this paper, each curve is shifted up from the curve below
by 0.8 for clarity. The data are well described almost up
to the peak, about one half or one unit in ξ below. Beyond
the peak the predictions fail.

In [8] a much better agreement with data over the whole
ξ range was obtained, but the MLLA prediction was mod-
ified in two aspects. Firstly, an energy independent back-
ground term was added to the MLLA multiplicity formula
and, secondly, a correction for mass effects at large ξ was

Table 2. Four independent fits of ΛQCD to OPAL data at 91
and 202 GeV, where the cuts in each case are labelled by the
value of m

m (GeV) 0.3 0.4 0.5 0.6
ΛQCD (MeV) 258 ± 8 293 ± 9 307 ± 10 317 ± 10
χ2

DF 7.0 3.0 2.3 1.8
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x/

σ 
dσ

/d
x

OPAL 202
OPAL 172
OPAL 133
OPAL 91
TOPAZ 58
TASSO 44
TASSO 35
TPC 29
TASSO 14

Fig. 1. Fit of ΛQCD to OPAL data at
√

s = 91 and 202 GeV,
after fitting the initial gluon FF to TASSO data at 14 GeV.
The ξ region of data is chosen as described in (25) and (26),
and is indicated by the vertical dotted lines. The upper bound
corresponds to m = 0.3 GeV. The predictions from this fit
of other data sets is also shown. The lowest curve shows the
independent distorted Gaussian fit to TASSO data at 14 GeV.
Each curve is shifted up by 0.8 for clarity

added. In contrast, our fit, starting from the Gaussian pa-
rameterization of the TASSO data at 14 GeV, predicts the
ξ distributions at higher energies using only a single param-
eter, ΛQCD; it is remarkable that MLLA evolution predicts
all data sets at higher energies very well up to the peak
region. The discrepancy beyond the peak region in our case
is too large to be attributed to mass effects.

The distorted Gaussian parameters are highly corre-
lated with one another, so in order to constrain them bet-
ter, we fit these parameters and ΛQCD simultaneously to
TASSO data at 14 GeV and OPAL data at 91 and 202 GeV.
We again impose the upper bound of (26), but this time
on all three data sets for consistency. However, we im-
pose no lower bound on any of the data, because all dis-
torted Gaussian parameters are free in the fit. Taking first
m = 0.4 GeV, we obtained the results presented in Table 3
with χ2

DF = 2.3, which are shown graphically in Fig. 3. This
figure also contains predictions for other data sets not used
in the fit. The case for m = 0.5 GeV is shown in Table 4
and Fig. 4, where χ2

DF = 2.1. Since the dependence of χ2

on the parameters cannot be adequately approximated by
a quadratic, and since the present study does not aim at a
precise determination of ΛQCD, we refrain from calculating
the errors in these and subsequent tables.

The data around the peak region are better described
for m = 0.5 GeV. We note that there is a large difference
between the parameters in each case, which may be due to
the fact that the theory cannot accomodate some or all of
the three main features of the data, being the position of
the maximum, the width and the normalization. Indeed,
two local minima were found in each fit, and the global

0 1 2 3 4 5 6
ξ

0

5

10

15

x/
σ 

dσ
/d

x

OPAL 202
OPAL 172
OPAL 133
OPAL 91
TOPAZ 58
TASSO 44
TASSO 35
TPC 29
TASSO 14

Fig. 2. As in Fig. 1, with an upper bound in ξ on the data
used corresponding to m = 0.6 GeV and indicated by a vertical
dotted line. Each curve is shifted up by 0.8 for clarity. (Note
again that the lowest curve is from an independent fit to all
TASSO data at

√
s = 14 GeV, and hence is identical to the

corresponding curve in Fig. 1.)

Table 3. Fit of gluon FF and ΛQCD to all TASSO data at
14 GeV and OPAL data at 91 and 202 GeV (88 data points),
with m = 0.4 GeV

N ξ σ2 s k ΛQCD (MeV)
7.86 2.11 0.40 −0.46 −1.32 649

0 1 2 3 4 5 6
ξ

0

5

10

15

x/
σ 

dσ
/d

x

OPAL 202
OPAL 172
OPAL 133
OPAL 91
TOPAZ 58
TASSO 44
TASSO 35
TPC 29
TASSO 14

Fig. 3. Fit of gluon FF and ΛQCD to TASSO data at 14 GeV
and OPAL data at 91 and 202 GeV, with an upper bound in ξ on
the data used corresponding to m = 0.4 GeV and indicated by a
vertical dotted line. Other data sets are shown for comparison.
The upper bound on ξ for each data set used in the fit is
indicated by a vertical dotted line
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Table 4. As in Table 3, but with 83 data points and m =
0.5 GeV

N ξ σ2 s k ΛQCD (MeV)
11.80 2.60 0.67 −0.26 −1.48 87

Table 5. Fit to all available data (413 data points), with
m = 0.5 GeV (see text)

N ξ σ2 s k ΛQCD (MeV)
11.65 2.57 0.70 −0.19 −1.17 130

0 1 2 3 4 5 6
ξ

0

5

10

15

x/
σ 

dσ
/d

x

OPAL 202
OPAL 172
OPAL 133
OPAL 91
TOPAZ 58
TASSO 44
TASSO 35
TPC 29
TASSO 14

Fig. 4. As in Fig. 3, but with m = 0.5 GeV
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15

x/
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dσ
/d

x

OPAL 202
OPAL 172
OPAL 133
OPAL 91
TOPAZ 58
TASSO 44
TASSO 35
TPC 29
TASSO 14

Fig. 5. Global fit of gluon FF and ΛQCD, with m = 0.5 GeV,
to the data shown here and other data listed in the text

minimum shifted from one of these two local minima to
the other as m increased from 0.4 to 0.5 GeV.

The resulting values for ΛQCD in the fits of Tables 3
and 4 are clearly too different for either of them to be taken
seriously.This is probably due to the fact thatΛQCD and the
distorted Gaussian parameters are highly correlated with
one another. In the fits of Table 2, the values of ΛQCD are
more consistent with each other since they were completely
uncorrelated with the distorted Gaussian parameters.

To better constrain all the parameters would require
using more data sets in the fit. Therefore we fit the distorted
Gaussian parameters and ΛQCD to all available data sets,
namely the data sets in Figs. 1–4, as well as TASSO data
at 22 GeV [21], ALEPH [22], DELPHI [23], L3 [24] and
SLD [25] data at 91 GeV, ALEPH data at 133 GeV [26],
DELPHI data at 161 GeV [27] and OPAL data at 183 and
189 GeV [20]. For m = 0.5 GeV, we obtained the results
shown in Table 5 and Fig. 5, for which χ2

DF = 4.0 was
achieved. The results do not differ significantly from those
in Table 4 and Fig. 4, nor from similar fits with m = 0.4 and
0.6 GeV, for which we obtained ΛQCD = 106 and 129 MeV
respectively. In all cases we found that there were more than
one local minimum, from which we selected the minimum
with the smallest χ2.

The fit in Fig. 5 is the main result of this paper. A global
fit in which the parameters of the distribution at the lowest
scaleQ0 are fitted simultaneouslywith the parameterΛQCD
leads to an improvement over the fits in Figs. 1 and 2. At
all energies the description is now good up to the peak or
even beyond. We stress again that this fit, beyond the input

parameterization at Q0, does not involve any additional
assumptions beyond the MLLA evolution.

4 Further studies

In all our fits so far we obtained a good description of the
data below the maximum, i.e. for small ξ values, but a
rather bad description in the region above the peak, i.e.
for large ξ (with the exception of the TASSO 14 GeV data,
when it was fitted over the whole ξ range). This discrepancy
may have several reasons.

Since theMLLAapproach is supposed to be particularly
valid for sufficiently large ξ, presumably in the peak region,
despite the discussion at the end of Sect. 2 it may have
been necessary to exclude data below a given ξ, e.g. that
of (25), in our approach of fitting the distorted Gaussian
parameters and ΛQCD simultaneously to all three data sets.
However, with this approach only a few data points are
left, in particular for the TASSO data at 14 GeV, when
imposing also the upper limit on ξ in (26). Therefore a
lower ξ cut with the approach applied in Tables 3 and 4
does not work.

Alternatively, itmaybe that the upward evolution of the
higher moments tends to become unstable. To investigate
this possibility, we fit the distorted Gaussian parameters
and ΛQCD to TASSO data at 14 GeV and OPAL data
at 91 and 202 GeV as before, but this time we set Q0 =
202 GeV/2, i.e. we fit the initial distribution at the highest
energy and evolve downwards. The results of this fit are
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Table 6. Fit of gluon FF to TASSO data at 14 GeV and OPAL
data at 91 and 202 GeV (83 data points), using Q0 = 202 GeV/2
and downward evolution, with m = 0.5 GeV

N ξ σ2 s k ΛQCD (MeV)
26.83 3.66 1.17 −0.52 −1.49 225
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Fig. 6. Fit of gluon FF to TASSO data at 14 GeV and OPAL
data at 91 and 202 GeV, using Q0 = 202 GeV/2 and downward
evolution, with m = 0.5 GeV

shown in Table 6 and Fig. 6, where χ2
DF = 3.9. The value of

ΛQCD obtained is in good agreement with that obtained in
other analyses. The resulting ξ distributions also fit better
to the data at the highest energies at larger ξ values beyond
the peak, whereas at the remaining energies the description
of the data around the peak becomes worse.

Another possibility for our large ξ discrepancy may be
due to the region of function space in ξ available to the
parameterization in (27) being insufficient. To enlarge this
region, we add a term

C5δ
5 + C6δ

6 (28)

to the argument of the exponential in (27), and include
C5 and C6 in the list of parameters to be fitted. However,
when performing this fit with m = 0.5 GeV, there is no
significant improvement over the fit in Fig. 4.

This indicates that the failure to describe the region
above the peak is inherent to the MLLA formalism as it
is applied here. A better approximation to the full ana-
lytic solution to (7) may improve the large ξ description,
since it includes certain corrections of next-to-MLLA or-
der. Such corrections are also included, for example, in the
limiting spectrum within the LPHD approach, where, com-
pared to our fits, a better description of the data beyond
the peak is achieved, given suitable modifications to the
MLLA evolution of the normalization (see Sect. 1). There-
fore we repeated the fit of Fig. 4, but this time including the
extra term given by (24) in the evolution. In this case χ2

DF

increased to 2.6, and this increase can be attributed to the
fact that the deviations from the data were slightly larger
beyond the peak. However, up to the peak the description
was as good as the fit of Fig. 4. Furthermore the theoretical
curves were rather similar to those of Fig. 4 in the ξ range
of the data. This suggests that the MLLA can only de-
scribe data up to the peak, and that a full next-to-MLLA
calculation is required beyond the peak, which includes, in
particular, the correlation between the evolution of quark
and gluon jets.

5 Conclusions

In this work we perform fits to the available momentum
spectra data of e+e− annihilation in the energy range 14–
202 GeV using MLLA evolution. No additional assump-
tions, such as the LPHD, is used other than a conjectured
functional form for the gluon FF, and therefore we have
achieved a particularly pure test of the MLLA. We find a
good description of the data in the region up to the max-
imum of the distribution in the scaling variable ξ, with
only a minimal number of parameters. In particular we
find that MLLA evolution without additional input gives
a good description of the normalization up to the peak,
and also the approximate position of the peak.

Our fitted values of ΛQCD cover a large range. How-
ever, in our model-independent approach, there is some
theoretical ambiguity in ΛQCD. We have chosen the renor-
malisation and factorization scales to be Q =

√
s/2, but we

could also have chosen some factor of this, of O(1). With
this theoretical error, our results for ΛQCD are consistent
with those of other studies [1, 8, 9, 16].

Clearly, our form for the MLLA evolution is insufficient
to describe the data above the peak. The inclusion of the
next-to-MLLA contribution, (24), does not improve our
results. At this order, a full treatment of momentum dis-
tributions would include quark–gluon mixing, which may
be the most important effect at this order and therefore
may significantly help to reduce the large ξ discrepancy.

Finally, it will be interesting to incorporate the MLLA
into the full NLO fits which apply to the large x range, in
order to extend the region of validity towards lower values
of x. Our recipe for fitting the fragmentation functions is
consistent and compatible with the standard fitting.
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